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Abstract
A new path integral measure factorization method is proposed. By using this
method the reduction procedure in Wiener path integrals for a scalar particle on
a smooth compact Riemannian manifold with the given free isometric action
of the compact semisimple unimodular Lie group is considered. It is shown
that the path integral measure is not invariant under the reduction. The integral
relation between path integrals representing the fundamental solutions of the
parabolic equations on initial and reduced manifolds is derived.

PACS numbers: 03.65.Bz, 02.20.-a, 02.40.-k, 02.50.Ey, 31.15.Kb

1. Introduction

Recently, interest in the problem of path integral quantization of finite-dimensional systems
with a symmetry has received renewed attention [1]. One can meet these systems in various
branches of physics.

However, there is another reason why we are interested in the path integral quantization
of these systems. It is supposed that new path integral quantization approaches could be
applied to the infinite dynamical systems with gauge symmetries. In this connection, the finite-
dimensional system which describes the motion of a scalar particle on the Riemannian manifold
with the given free isometric Lie group action is especially attractive for investigations [2].

Having such an action of the group on a manifold, we can view the manifold as a local
fibre space. Moreover, there arises a principal bundle structure with the connection induced
in a natural way by a metric of the manifold. In [3] this connection was called the mechanical
connection.

In the case of motion under the group-invariant potential, the initial dynamical system
is reduced to the system given on the orbit space. It is due to this fact that we can view our
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system as a model system in studying the interrelation between the quantum motions of initial
and reduced systems. This interrelation is the main point in the problem of quantum reduction
of the constrained systems.

In this paper we will study the reduction procedure in the path integral for the motion
of a scalar particle on the smooth compact Riemannian manifold on which the free isometric
action of the compact unimodular semisimple Lie group is given. By the path integral reduction
procedure we mean such a path integral transformation, when the initial space is changed for
the reduced one.

There are a lot of papers devoted to this problem [1,2,4], but in spite of this, the question
of the correct value of the reduction Jacobian has not received a definite answer.

Most of the papers concerning the path integral reduction problem deal with the Feynman
path integrals defined by discrete approximations. In our paper we will consider the case of
the Wiener path integrals, in which the integration measures are generated by the stochastic
processes. The stochastic processes will be determined by solutions of the stochastic
differential equations that are given on manifolds.

To define the stochastic processes (and the stochastic differential equations) on a manifold
we will use the method developed by Belopolskaya and Dalecky in [6]. This method is based on
a local description of stochastic processes. In the chart of the manifold the stochastic processes
are given by the definite stochastic differential equations. The equations are the result of the
exponential mapping from the corresponding stochastic differential equation defined on the
tangent bundle over the manifold. On overlapping of the charts the local equations and their
solutions transform into each other.

By using the local stochastic processes obtained after subdividing the time interval it is
possible to get the directed stochastic evolution family of the manifold mappings. In the case
of the compact manifold and when, in addition, some of the analytical restrictions are imposed
on the linear connection (the fulfilment of this requirement will be assumed in this paper)
the directed evolution family has a limit [6], which defines the global stochastic process on
a manifold. A similar scheme of the stochastic process definition is valid for a vector and a
principal bundle too [6].

In this paper we confine ourselves to the case when the effects coming from the nontrivial
topology of the manifold are not important. As a consequence of this reason the investigation
of the path integral reduction can be made in the local charts of the manifold. Afterwards, the
transition to the global picture can be realized by the method developed in [6].

The main problem of the path integral reduction is the separation of integration
variables. We should separate the variables associated with the group action on a
manifold from variables that are projected into the base of the principal bundle. In
other words, it is necessary to separate the invariant variables from the variables that
are changeable under the group action. In this paper we get such a separation of
variables by using the so-called ‘nonlinear filtering equation’ from the stochastic process
theory. Using this equation, we will derive the integral relation between path integrals
representing the fundamental solutions of parabolic equations defined on the initial and reduced
manifold.

In the case of the ‘nonzero momentum level reduction’ (in terms of the constrained
dynamical system theory) the path integral induced on the orbit space represents the
fundamental solution of the linear parabolic system of the differential equations. In the ‘zero-
momentum level reduction’ case, which is also considered in this paper, the path integrals on
the initial and reduced manifold serve to describe the motions of the scalar particles.

The investigation performed in this paper leads to the conclusion that the path integral
measure is not invariant under the reduction procedure.
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2. Definitions

Let the backward Kolmogorov equation be given on a smooth compact Riemannian
manifold P: (

∂

∂ta
+

1

2
µ2κ�P(Qa) +

1

µ2κm
V (Qa)

)
ψ(Qa, ta) = 0

ψ(Qb, tb) = ϕ0(Qb) (tb > ta)

(1)

µ2 = h̄
m

, κ is a real positive parameter,

�P(Qa) = G−1/2 ∂

∂QA
a

GABG1/2 ∂

∂QB
a

is the Laplace–Beltrami operator on P , and G = det GAB (the indices denoted by capital
letters run from 1 to nP = dim P). If the coefficients of equation (1) and the function ϕ0 all
satisfy (as in [6]) the necessary smooth requirements, then the solution of equation (1) can be
represented in the form

ψ(Qa, ta) = E

[
ϕ0(η(tb)) exp

{
1

µ2κm

∫ tb

ta

V (η(u)) du

}]

=
∫
�−

dµη (ω)ϕ0(η(tb)) exp{· · ·} (2)

where the path integral measure on the path space �− = {ω(t) : ω(ta) = 0, η(t) = Qa +ω(t)}
given on the manifold P is defined by the probability distribution of a stochastic process η(t).
In a local chart (U, φ) of the manifold P the process η(t) is given by the solution of the
stochastic differential equation

dηA (t) = 1

2
µ2κG−1/2 ∂

∂QB
(G1/2GAB) dt + µ

√
κXA

M̄
(η(t)) dwM̄ (t) (3)

(XA

M̄
is defined by a local equality

∑nP

K̄=1
X A

K̄
XB

K̄
= GAB , and here and in what follows we

denote the Euclidean indices by over-barred indices).
Note that equation (3) is the Stratonovich equation and it transforms in a covariant way

under changing the charts of the manifold. It is this defining property that gives one an
opportunity to construct a global process on the whole manifold.

We will assume that equation (1) has a fundamental solution GP (Qb, tb;Qa, ta), which
is defined by the semigroup (2):

ψ(Qa, ta) =
∫

GP (Qb, tb;Qa, ta)ϕ0(Qb) dvP (Qb) ≡ (GPϕ0)(Qa, ta)

(dvP (Q) = √G(Q) dQ1 · . . . · dQnP ).
If in equation (2)ϕ0(Q) = G−1/2(Q)δ(Q−Q′) is set, we get the probability representation

of the kernel GP (Qb, tb;Qa, ta) of the semigroup (2). This can be done by a less formal
approach, if we consider the appropriate limit of the approximating functions.

3. Transition to fibre coordinates

Let a smooth free action of a compact Lie group G be given on a compact manifold P . We
assume, in addition, that this right action is isometric and the group G is unimodular and
semisimple. Then, the manifold P has a fibred structure and there is a principal fibre bundle
π : P → P/G =M [7], where M is an orbit space of the action of the group G on P . The
principal bundle structure means that there is a corresponding foliation, which in our case is
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given by the Killing vectors of the Riemannian metric of the manifold P . From this it follows
that we can introduce, at least locally, special coordinates (the adapted coordinates) in which
the coordinate functions are separated into two sets. The functions of the first set are variable
functions under the group action, and those from the second set are the invariant functions.

As it is usually done, we identify the invariant functions with coordinates on a base
manifold M of the fibre bundle P(M,G), and the variable functions—with the coordinates
on a group manifold G of this fibre bundle.

Hence, we change the coordinates QA of the manifold P for the adapted coordinates
(xi, aα) consistent with the structure of the fibre bundle P(M,G).

As a result, the right invariant metric GAB becomes the Kaluza–Klein metric [8]:(
hij (x) + A

µ

i (x)A
ν
j (x)γ̄µν(x) A

µ

i (x)ū
ν
σ (a)γ̄µν(x)

A
µ

i (x)ū
ν
σ (a)γ̄µν(x) ūµ

ρ (a)ū
ν
σ (a)γ̄µν(x)

)
. (4)

The orbit space metric hij (x) of (4) is defined as follows [2]: by using the Killing
vectors KA

α (Q) ∂
∂QA and the metric along the orbits dαβ = KA

α GABK
B
β , we transform GAB

into G⊥AB = .C
AGCD.

D
B with the help of the projectors .A

B = δAB − KA
α d

αβKβB . After
transition to the adapted coordinates given by QA = f A(xi, aα)1, we obtain the metric hij (x)

from the following formula:

hij (x) = G⊥AB
∂f A

∂xi

∂f B

∂xj
.

The mechanical connection A
µ

i (x) is a pull-back of the Lie algebra-valued connection
1-form � = �α ⊗ eα by the preferred section. In terms of the initial metric GAB the 1-form
�α are given as follows [2, 3, 8]:

�α(Q) = dαβ(Q)GAB(Q)KB
β (Q) dQA.

Finally, the expression at the bottom right corner of matrix (4) is the metric on the orbit over
x. The matrix ūα

β(a) is an inverse matrix to matrix v̄αβ (a) = ∂3α(b,a)

∂bβ
|b=e. 3 is the composition

function of the group: for c = ab, cα = 3α(a, b).
In new coordinates the determinant of the metric GAB is equal to

det GAB = (det hij (x)) (det γ̄αβ(x)) (det ūµ
ρ (a))

2.

In the path integral of equation (2) a local transition to the adapted coordinates (xi, aα),
when one neglects the effects coming from the nontrivial topology of the manifold, can be
realized by the stochastic process methods.

The transformation of the measure in the path integral is derived from the phase-space
transformation of the stochastic process ηA(t) = f A(xi(t), aα(t)). We change the stochastic
process ηA(t) for a new process ζA(t) with the coordinates (xi(t), aα(t)). Since the phase-
space transformation of the stochastic process conserves the probabilities, the path integral of
equation (2) transforms into the path integral

ψ(Qa, ta) = E

[
ϕ̃0(x

i(tb), a
α(tb)) exp

{
1

µ2κm

∫ tb

ta

Ṽ (x(u)) du

}]
(5)

where ϕ̃0(x, a) = ϕ0(f (x, a)), Ṽ (x) = V (f (x, a)) (in case of the invariance of the potential
term V (Q))) and the boundary values of xi

a ≡ xi(ta) and aαa ≡ aα(ta) in the right-hand side of
equation (5) should be expressed in terms of Qa with the help of inverse transformation f −1.

1 An explicit expression of the function f depends on the choice of an invariant variable x.
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The process ζA(t) that generates the measure in the path integral of equation (5) is
described by the following local stochastic differential equations:

dxi (t) = 1

2
µ2κ

[
1√
hγ̄

∂

∂xn
(hni

√
hγ̄ )

]
dt + µ

√
κXi

n̄(x(t)) dwn̄ (t)

daα (t) = µ2κ

[
− 1

2

1√
hγ̄

∂

∂xk

(√
hγ̄ hkmAν

m

)
v̄αν (a(t))

+
1

2
(γ̄ λε + hijAλ

i A
ε
j )v̄

σ
λ (a(t))

∂

∂aσ
(v̄αε (a(t))

]
dt

+µ
√
κv̄αλ (a(t))Ȳ

λ
ε̄ dwε̄ (t)− µ

√
κXi

n̄A
ν
i v̄

α
ν (a(t)) dwn̄ (t).

(6)

Here γ̄ = det γαβ(x), h = det hij (x), Xi
n̄ and Ȳ λ

ε̄ are defined by the local equalities∑nM
n̄=1 X

i
n̄(x)X

j

n̄(x) = hij (x) and
∑nG

ε̄=1 Ȳ
α
ε̄ (a)Ȳ

β

ε̄ (a) = γ̄ αβ(a). The equations (6) have been
derived with the help of the Itô differentiation formula.

Note that these local stochastic differential equations transform in a covariant way under
changing the charts of the manifold. From this it follows that it is possible to construct the
global process ζ(t) on the principal bundle P(M,G), whose local components coincide with
the solutions of the stochastic differential equations (6).

The infinitesimal generator of the transformed semigroup (5) is the Laplace–Beltrami
operator for metric (4):

1

2
µ2κ

{
�M(x) + hij 1√

γ̄

(
∂
√
γ̄

∂xi

)
∂

∂xj
+ hijAα

i A
β

j L̄αL̄β − 2hinAα
nL̄α

∂

∂xi
− hin ∂A

α
n

∂xi
L̄α

− hin

√
h

∂
√
h

∂xi
Aα

nL̄α − hin 1√
γ̄

∂
√
γ̄

∂xi
Aα

nL̄α − ∂hin

∂xi
Aα

nL̄α + γ̄ αβL̄αL̄β

}

where �M is the Laplace–Beltrami operator on M, and by L̄α we denote the right invariant
vector field L̄α = v̄εα(a)

∂
∂aε

.

4. Factorization of the measure

Now we should solve the main problem—the problem of the factorization of the measure
in the path integral of equation (5). First of all, we make use the properties of conditional
expectations of the Markov process to rewrite the right-hand side of equation (5) in the form

ψ(Qa, ta) = E

[
exp

{
1

µ2κm

∫ tb

ta

Ṽ (x(u)) du

}
E[ϕ̃0(x

i(tb), a
α(tb))|(Fx)

tb
ta ]

]

where the path integral E[. . . |(Fx)
tb
ta ] is the conditional expectation of a function

ϕ̃0(x
i(t), aα(t)) given a sub-σ -algebra generated by the process x(t) (t � tb).
Examining the equations (6) we find that these equations are the same as the stochastic

differential equations that are used in the nonlinear filtering theory [9, 10]. The parallel with
this theory is achieved, if we consider xi(t) as the observation process and aα(t) as the signal
process.

It is essential for us that in this theory there is a nonlinear filtering equation, which describes
the behaviour of the conditional expectation

E[ϕ̃0(x
i(t), aα(t))|(F)x)

t
ta

] ≡ ˆ̃ϕ0(x(t)).

It will be convenient to take this equation in the form presented in [10]. With account of
equations (6), we write it in the following way:



9334 S N Storchak

d ˆ̃ϕ0 (x(t)) = µ2κ

[
−1

2

1√
hγ̄

∂

∂xk

(√
hγ̄ hkmAµ

m

)]
E[L̄µϕ̃0(x

i(t), aα(t))|(Fx)
t
ta

] dt

+ 1
2µ

2κ(γ̄ µν + hijA
µ

i A
ν
j )E[L̄µL̄νϕ̃0(x

i(t), aα(t))|(Fx)
t
ta

] dt

−µ√κAµ

k X
k
m̄ E[L̄µϕ̃0(x

i(t), aα(t))|(Fx)
t
ta

] dwm̄ (t). (7)

By using the Peter–Weyl theorem, we develop the function ϕ̃0(x
i, aα) considered as a

function on group G in series:

ϕ̃0(x
i, aα) =

∑
λ,p,q

cλpq(x
i)Dλ

pq(a
α)

where Dλ
pq(a

α) are the matrix elements of an irreducible representation T λ:∑
q

Dλ
pq(a)D

λ
qs(b) = Dλ

ps(ab).

Then

E[ϕ̃0(x
i(t), aα(t))|(F)x)

t
ta

] =
∑
λ,p,q

cλpq(x
i(t)) E[Dλ

pq(a
α(t))|(Fx)

t
ta

].

In this formula

cλpq(x(t)) = dλ

∫
G
ϕ̃0(x(t), θ)D̄

λ
pq(θ) dµ (θ)

where dλ is a dimension of an irreducible representation and dµ (θ) is a normalized
(
∫

G dµ (θ) = 1) invariant Haar measure on a group G.
After such a transformation we get the following stochastic differential equation for the

conditional expectation: D̂λ
pq(x

i(t)) ≡ E[Dλ
pq(a

α(t))|(Fx)
t
ta

]:

dD̂λ
pq (x(t)) = A

µ

1 (Jµ)
λ
pq ′D̂

λ
q ′q(x(t)) dt + A

µν

2 (Jµ)
λ
pq ′(Jν)

λ
q ′q ′′D̂

λ
q ′′q(x(t)) dt

−(Jµ)λpq ′D̂λ
q ′q(x(t))A

µ

k (x(t))X
k
m̄(x(t)) dwm̄ (t) (8)

where the summation on all repeated indices except λ is assumed.

In equation (8) (Jµ)λpq ≡
( ∂Dλ

pq (a)

∂aµ

)|a=e are infinitesimal generators of the representation
Dλ(a). The coefficients Aµ

1 (x(t)) and A
µν

2 (x(t)) are easily derived from equation (7), but for
brevity we do not write them explicitly. Also, in deriving equation (8) from (7), we have used
the fact that

L̄µD
λ
pq(a) =

∑
q ′

(Jµ)
λ
pq ′D

λ
q ′q(a).

We remark that D̂λ
pq(x(t)) depends also on initial points xi

a = xi(ta) and θαa = aα(ta)

besides the process xi(t).
Thus, due to the symmetry of our model we have obtained the linear matrix equation for

the conditional expectation D̂λ
pq . Its solution can be presented as follows [11, 12]:

D̂λ
pq(x(t)) = (←−exp)λps(x(t), t, ta) E[Dλ

sq(a
α(ta))|(Fx)

t
ta

]

where by←−exp we denote the multiplicative stochastic integral

(←−exp)λps(x(t), t, ta) =←−exp
∫ t

ta

{
µ2κ

[
1
2 γ̄

µν(x(u))(Jµ)
λ
pr(Jν)

λ
rs

−1

2

1√
hγ̄

∂

∂xk

(√
hγ̄ hkmAµ

m

)
(Jµ)

λ
ps

]
du

−µ√κAµ

k (x(u))(Jµ)
λ
psX

k
m̄(x(u)) dwm̄ (u)

}
(9)

(h, γ̄ depend on x(u)).
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In equation (9) the multiplicative stochastic integral←−exp is defined as a limit of the sequence
of time-ordered multipliers that have been obtained as a result of breaking the time interval
(t, ta). The arrow aimed to the multipliers given at greater times denotes the time-order of
these multipliers.

Notice also, that at the boundary we have

E[Dλ
sq(a

α(ta))|(Fx)
t
ta

] = Dλ
sq(a

α(ta)) = Dλ
sq(θ

α
a ).

As a result of our transformations we get the following relation between the expectation
values (the path integrals):

(GPϕ0)(Qa, ta) =
∑

λ,p,q,q ′
E

[
exp

{
1

µ2κm

∫ tb

ta

Ṽ (x(u)) du

}
cλpq(x(tb))

×(←−exp)λpq ′(x(t), tb, ta)D
λ
q ′q(θa)

]
(10)

in which Qa should be written in terms of (xa, θa) and (←−exp)λpq ′(· · ·) is as in equation (9).
By using the representation of the solution of equation (8) through the multiplicative

stochastic integral (9) we will have

1

2
µ2κ

{[
DM + hni 1√

γ̄

∂
√
γ̄

∂xn

∂

∂xi

]
(I λ)pq − 2hniAα

n(Jα)
λ
pq

∂

∂xi

− 1√
hγ̄

∂

∂xn

(√
hγ̄ hnmAα

m

)
(Jα)

λ
pq + (γ̄ αν + hijAα

i A
ν
j )(Jα)

λ
pq ′(Jν)

λ
q ′q

}

as the infinitesimal generator of the semigroup under the sum in equation (10). In this formula
(I λ)pq is a unity matrix.

It is possible to inverse the equality (10), that is to express the path integral of the right-
hand side of equation (10) through our initial path integral. We will do this for the path
integral representations of the corresponding Green functions. For this purpose we take the
expansion of the delta-function instead of ϕ0 in equation (10). Then to perform an inversion
of equation (10) we will multiply both sides of it by D̄(θa) and D(θb) and integrate over the
boundary group variables with respect to the invariant normalized Haar measure. After that
we get

Gλ
pq(xb, tb; xa, ta) =

∫
G
GP(σ (xb)θ, tb; σ(xa), ta)Dλ

qp(θ) dµ (θ) (11)

with the symbolic representation of the Green function Gλ
pq as

Gλ
pq(xb, tb; xa, ta) = Ex(ta)=xa

x(tb)=xb

[
(←−exp)λpq(x(t), tb, ta) exp

{
1

µ2κm

∫ tb

ta

Ṽ (x(u)) du

}]

=
∫

x(ta)=xa
x(tb)=xb

dµx exp

{
1

µ2κm

∫ tb

ta

Ṽ (x(u)) du

}
←−exp

∫ tb

ta

{
µ2κ

[
1

2
γ̄ µν(Jµ)

λ
pr(Jν)

λ
rq

−1

2

1√
hγ̄

∂

∂xk

(√
hγ̄ hkmAµ

m

)
(Jµ)

λ
pq

]
du− µ

√
κA

µ

k (Jµ)
λ
pqX

k
m̄ dwm̄

}
.

In deriving relation (11) we have used the property of the right invariance of the Green
function GP and we have presented the coordinates QA in terms of xi and θα , QA = σA(x)θ ,
with the help of the local sections σA(x) = f A(x, e).
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The matrix Green function Gλ
pq acts in the space of the section of the associated bundle

E = P ×G Vλ with the scalar product

(ψ1, ψ2) =
∫

M
〈ψ1, ψ2〉Vλ

√
γ̄ (x) dvM (x)

(dvM (x) = √h(x) dx1 . . . dxnM , nM = dim M and 〈·, ·〉Vλ
is an internal scalar product),

provided that we identify the diffusion in xi—variables with the diffusion on the base space
M. The latter can be done by using the method of proof from [13], where the Dynkin theorem
on a phase-space transformation of stochastic processes was generalized to be applied to the
case of projections of the invariant diffusions.

5. Zero-momentum level reduction

In this section we consider a particular case of formula (11), when λ = 0. The reduction of
this case corresponds to reduction onto a zero-momentum level in the constrained dynamical
systems. And as a result of the path integral reduction procedure we will have the integral
relation between the path integrals that represent the scalar Green functions.

Since in this case the multiplicative stochastic integral becomes the unity matrix, then the
path integral measure of the path integral on the manifold M is now defined by the stochastic
process xi(t):

dxi (t) = 1

2
µ2κ

[
hni

√
γ̄

∂
√
γ̄

∂xn
+

1√
h

∂

∂xn

(
hni
√
h
)]

dt + µ
√
κXi

n̄(x(t)) dwn̄(t).

It follows that the infinitesimal generator of the process xi(t) is a sum of the Laplace–
Beltrami operator and the term which is linear in the partial derivative of x. The standard
procedure of the path integral transformation, the Girsanov–Cameron–Martin transformation,
allow us to get rid of this additional term. By this procedure, we change the stochastic process
xi(t) for the process x̃i (t), whose stochastic differential equation is

dx̃i (t) = 1

2
µ2κ

[
1√
h

∂

∂xn

(
hni
√
h
)]

dt + µ
√
κXi

n̄(x̃(t)) dwn̄ (t).

The transformation of the path integral measure is given by

ln
dµx

dµx̃
(x̃(t)) = 1

2
µ
√
κ

∫ t

ta

1√
γ̄

∂
√
γ̄

∂xn
Xn

m̄ dwm̄(t)− 1

4
µ2κ

∫ t

ta

hni

γ̄

∂
√
γ̄

∂xn

∂
√
γ̄

∂xi
dt.

In this formula the exponential with the stochastic integral can be replaced by the
exponentials with the ordinary integrals. This has been done with the help of the Itô’s identity
from [5, 14]:

exp

{
1

2
µ
√
κ

∫ t

ta

1√
γ̄

∂
√
γ̄

∂xn
Xn

m̄ dwm̄ (t)

}

=
(
γ̄ (x̃(t))

γ̄ (x̃(ta))

)1/4

exp

{
− µ2κ

4

∫ t

ta

[
hni

∂2
(

ln
√
γ̄
)

∂xn∂xi

+
1√
h

∂
(
hni
√
h
)

∂xn

∂
(

ln
√
γ̄
)

∂xi
+

1

2

hni

γ̄

∂
√
γ̄

∂xn

∂
√
γ̄

∂xi

]
dt

}
.

After these transformations we get the following integral relation:

(γ̄ (xb)γ̄ (xa))
−1/4 GM(xb, tb; xa, ta) =

∫
G
GP (σ(xb)θ, tb; σ(xa), ta) dµ (θ). (12)
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The Green function GM determines a semigroup which acts in the Hilbert space with a
scalar product (ψ1, ψ2) =

∫
ψ1(x)ψ2(x) dvM (x). The path integral representation of GM is

given by

GM(xb, tb; xa, ta) =
∫

dµx̃ (ω) exp

{∫ tb

ta

[
1

µ2κm
Ṽ (x̃(u)) + J (x̃(u))

]
du

}

where an additional potential term, the Jacobian of the quantum reduction, is

J (x) = −µ2κ

8

[
DM ln γ̄ +

1

4
hni ∂ ln γ̄

∂xn

∂ ln γ̄

∂xi

]
.

In (xb, tb)-variables, the Green function GM satisfies the forward Kolmogorov equation
with the operator

Ĥκ = h̄κ

2m
DM − h̄κ

8m

[
DM ln γ̄ +

1

4
(∇M ln γ̄ )2

]
+

1

h̄κ
Ṽ .

At κ = i this forward Kolmogorov equation becomes the Schrödinger equation with the
Hamilton operator Ĥ = − h̄

κ
Ĥκ |κ=i .

Thus, the reduction procedure in the Wiener path integrals representing the evolution
of finite-dimensional dynamical systems with a symmetry give rise an additional potential
term—the reduction Jacobian. It is worth remarking that this potential term, which is usually
supposed to come from the ordering procedure in the Hamiltonian operator associated with
the reduced classical Hamiltonian, has an interesting representation. It can be written as some
differential expression depending on the mean curvature, which is normal to the orbit above
the point of the base space [15].
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